
IJDCST @November Issue- V-1, I-7, SW-48
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

122 www.ijdcst.com

Adaptive Monitoring Solution Satisfy User Profiles for

Targeted Online Data Delivery
1Rathna Kumari Kilari , 2Y.Surekha , 3G.Lalitha Kumari , 4V.Sowjanya

1 Student, PVPSIT, KANURU, VIJAYAWADA, KRISHNA DIST.

 2 Assistant Prof, PVPSIT,KANURU,VIJAYAWADA,KRISHNA DIST.

3 Sr.Assistant Prof, PVPSIT,KANURU,VIJAYAWADA,KRISHNA DIST.

4 Assistant Prof, PVPSIT,KANURU,VIJAYAWADA,KRISHNA DIST.

Abstract: We present an alternative and more flexible approach that maximizes user utility by satisfying all users. It

does this while minimizing the usage of system resources. We discuss the benefits of this latter approach and

develop an adaptive monitoring solution Satisfy User Profiles (SUPs). Through formal analysis, we identify

sufficient optimality conditions for SUP. Using real (RSS feeds) and synthetic traces, we empirically analyze the

behavior of SUP under varying conditions. Our experiments show that we can achieve a high degree of satisfaction

of user utility when the estimations of SUP closely estimate the real event stream, and has the potential to save a

significant amount of system resources. We further show that SUP can exploit feedback to improve user utility with

only a moderate increase in resource utilization.

I. INTRODUCTION

The Web is becoming a universal medium

for disseminating information of all kinds, including

highly dynamic information. Significant amount of

valuable dynamic information is being posted to the

Web and people want to access it. Direct manual

viewing of dynamic Web pages is not an adequate

mode of access for one or both of the following two

reasons:

 Most information posted on the Web is not

made available forever and may disappear or

be replaced by new information at any time

 Many applications require automated

synthesis of information from multiple

dynamic Web sources

There is significant interest in systems that

monitor and process updates to frequently updated

Web pages automatically. THE diversity of data

sources and Web services currently available on the

Internet and the computational Grid. We consider a

number of scenarios including RSS news feeds and

auctions on the commercial Internet and scientific data

sets and Grid computational resources.

Push, pull, and hybrid protocols have been

used to solve a variety of data delivery problems.

Push-based consistency in the context of caching

dynamic Web content. Push is typically not scalable

and reaching a large number of potentially transient

clients is expensive. Pushing information may

overwhelm the client with unsolicited information.

Several hybrid push-pulls solutions have also been

presented. We focus on pull-based resource

monitoring and satisfying user profiles. The burden

of when to probe an RSS resource lies with the client.

Much of the existing research in pull-based data

delivery casts the problem of data delivery as

follows: Given some set of limited system resources.

We refer to this problem as OptMon1.

A solution toOptMon1 is accompanied by

the need to meet rigid a priori bounds on system

resource constraints. A rigid a priori setting may also

have the unintended consequence of forcing

excessive resource consumption even when there is

no additional utility to the user. While resource

consumption is dynamic and changes with needs with

this class of problems user needs are set as the

constraining factor of the problem. We present an

optimal algorithm in the OptMon2 class. SUP is

simple yet powerful in its ability to generate optimal

scheduling of pull requests. SUP is an online

IJDCST @November Issue- V-1, I-7, SW-48
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

123 www.ijdcst.com

algorithm; at each time point. SUP depends on an

accurate model of when updates occur to perform

correctly.

Most work on continuous query processing

assumes that data is “pushed” into the query engine

in the form of data streams. Only heuristics with no

formal guarantees on effectiveness have been

proposed for converting pull- oriented Web sources

into push-oriented data streams. Periodic polling

breaks down in the presence of a large number of

frequently updated Web sources, when resources

become inadequate for polling all Web pages at a fast

rate.

Dynamic Web pages undergo updates over

time and each updated version of the page potentially

contains new information of value to the application.

Due to the nature of Web protocols, obtaining

updates to Web pages generally requires polling

those pages. Typically, it is not feasible or desirable

to provision systems with adequate communication

bandwidth and processing power to support

exhaustive and rapid polling of a large number of

Web pages. Polling must be performed selectively

and some criteria for deciding when to poll each page

must be established. It may not be possible to capture

all changes to all pages of interest in a timely fashion

due to resource limitations.

II. Monitoring the Web & Dual Framework

Our models for the Web monitoring

scheduling problem and the way in which Web pages

change extend the framework. Let P be the set of

Web pages under consideration for monitoring. Time

is divided into discrete time instants and monitoring

is performed in epochs of N consecutive time

instants. We focus on the problem of scheduling

monitoring of the pages in P during a single epoch.

The monitoring a page includes the duties of fetching

the page from its remote source and determining

whether it has undergone one or more changes of

interest. This simplification is based on the

assumption that the fixed overhead for the operations

required is the dominant factor. Let C denote the

maximum number of pages that can be monitored in

a single time instant. Value of C depends on the

availability of resources for monitoring. If C equals

or exceeds the number of pages then the scheduling

problem is trivial: simply monitor each page at every

instant. A legal monitoring schedule for an epoch is

one that performs at most C monitoring of pages

during each time instant T1, T2, . . . , TN.

Let R = {r1; r2; . . . ; rn} be a set of resources

and T be an epoch and let {T1; T2; . . . ; TN} be a set

of equidistant chronons1 in T. schedule S =

{si,j}i=1...n;j=1...N is a set of binary decision variables.

The OptMon1 formulation assumes that

system constraints are hard constraints where their

assignment is a priori independent of specific user

utility maximization task. OptMon1 involves a

system resource constraint of the maximum number

of probes per chronon for all resources. This

constraint represents the number of monitoring tasks

that a Web monitoring system can allocate per

chronon for the task of maximizing the utility gained

from capturing updates to Web pages. The benefits of

OptMon1 are apparent whenever there are hard

system constraints on resources. OptMon1

formulation has two main limitations:

 We expect that there will be periods of

varying intensity with respect to the

intensity of updates at the server(s) as well

as the intensity of probes needed to satisfy

client profiles

 The rigidity of OptMon1 algorithms with

respect to system resource allocation

Solutions to OptMon1 have not dynamically

attempted to reduce resource consumption. Once the

upper bound on bandwidth has been set, bandwidth

can no longer be adjusted and user needs may not be

fully met. We propose a dual formulation OptMon2

setting the fulfillment of user needs as the hard

constraint. It assumes that the system resources that

will be consumed to satisfy user profiles should be

determined by the specific profiles and the

environment.

III. TARGETED DATA DELIVERY

MODEL

The centerpiece of our model is the notion

of execution intervals and a simple modeling tool for

representing dynamically changing client needs. We

then turn our attention to the formal definition of a

schedule and the utility of probing. We present a case

IJDCST @November Issue- V-1, I-7, SW-48
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

124 www.ijdcst.com

study using RSS a popular format for publishing

information summaries on the Web. The diverse data

types are nowadays available as publications in RSS.

The use of RSS feeds is continuously growing. A

user of such a reader can customize her profile by

specifying the rate of monitoring each RSS feed and

is supported by a pull-based protocol. The RSS

protocol was extended with special metatags such as

server side TTL that hint when new updates are

expected. Despite these, feature a client who is only

interested in being alerted of updates for a particular

item in some news category. A profile should be easy

to specify and sufficiently rich to capture client

requirements. Specified in the trigger part of the

notification rule, the trigger condition is immediately

evaluated and if it is true.

The period in which a notification rule is

executable was referred to in the literature as life. We

emphasize here the difference between the executable

period of a notification (life) and the period in which

rules. An execution interval starts with an event and

its length is determined by the relevant life policy.

With pull-based monitoring, content is delivered

upon request with limited effectiveness in estimating

object freshness. Hybrid approach combines push and

pull, based either on resource constraints or on role

definition. The mediator can monitor servers by

periodically pulling their content and determine when

to push data to clients based on their content delivery

profiles.

It was argued that the use of an update

model based on Poisson processes suits well updates

in a Web environment. The Poisson processes are

suitable for modeling a world where data updates are

independent from one another such as updates to

auction Web sites. Such a model reflects well

scenarios in which e-mails arrive more rapidly during

work hours and more bids arrive toward the end of an

auction.

IV. SUP Algorithm

Let R = {r1; r2; . . . ; rn} be a set of resources

and T be an epoch and let {T1; T2; . . . ; TN} be a set

of equidistant chronons1 in T. schedule S = {si,j} S

be a schedule. P = {p1; p2; . . . ; pm} be a set of user

profiles. Given a notification rule and the set of its

execution intervals EI(). SUP identifies the set of

resources QI Domain(Q,) that must be probed in

an execution interval I EI().

The main intuition behind the SUP

algorithm is to identify the best candidate chronon in

which the assignment of probes to resources

maximizes the number of execution intervals that can

benefit from each probe. We identify the best

candidate chronons by delaying the probes of

execution intervals to the last possible chronon in

which the utility is still positive. We now provide a

description of the algorithm. Pseudo code of the SUP

algorithm and the two routines:

a. AdaptiveEIsUpdate

b. UpdateNotificationEIs

The algorithm builds a schedule iteratively.

It starts with an empty schedule and repeatedly adds

probes. Then determines the earliest chronon in

which to probe and the notification rule associated

with this monitoring task. SUP depends on an

accurate set of execution intervals to perform

correctly. Determining a set of execution intervals

suffers from two main problems:

 The underlying update model that is used to

compute the execution intervals is stochastic

in nature

 It is possible that the underlying update

model is incorrect and the real data stream

behaves differently than expected

We propose to exploit feedback from probes

to revise the probing schedule in a dynamic manner

after each monitoring task. We first introduce the

general scheme of SUP that addresses the first

problem and does not require changes to any

parameters.

SUP uses the AdaptiveEIsUpdate routine to

apply the adaptive modifications. Routine first

applies adaptive modification to notification rule by

recalculating a new execution interval I* to be

scheduled. The routine determines a set of

notification rules that may be associated with

execution intervals that need to be modified by

identifying those notification rules that reference

resource ri in their trigger part. The

UpdateNotificationEIs routine is called to ensure that

IJDCST @November Issue- V-1, I-7, SW-48
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

125 www.ijdcst.com

resources that belong to overlapping intervals are

only probed once. Let l = be the assignment of SUP

where is the notification rule whose execution

interval I is processed at time Tj.

V. ALGORITHM PROPERTIES

SUP assumes the availability of a stream of

execution intervals generated using this or that update

model. The algorithm to focus on the monitoring of

execution intervals, SUP optimal solution depends

only on the number of execution intervals it is

required to consider during the monitoring task. SUP

is executed in an online fashion, where execution

intervals are introduced right before they are required

to be considered by SUP. We can exploit the

feedback gathered during the monitoring scheme to

better improve the probing of future scheduled

execution intervals by adaptive monitoring. SUP

accesses O(K) execution intervals bounded by Nn.

We expect K to be much smaller than Nn. since K

serves as a measure of the amount of data users

expect to receive during the monitoring process.

The dual optimization problems OptMon1 and

OptMon2 cannot be compared directly. User profiles

satisfactions may violate system constraints and

satisfying system constraints may fail to satisfy user

profiles. Whenever the resources consumed by SUP

satisfy the system constraints of OptMon1 then SUP

is guaranteed to solve the dual OptMon1 and

maximize user utility. Assume that in the schedule of

SUP, the maximum number of probes in any chronon

satisfies M. SUP utilizes in each chronon only the

amount of probes that is needed to satisfy the profile

expressions. A schedule S, generated by SUP with no

bound on system resource usage and a set of desired

system resource constraints. S can be used to avoid

over probing in chronons when less updates are

expected.

VI. EXPERIMENTAL ANALAYSIS

We implemented SUP experimented with it on

various trace data sets, life parameters and profiles.

Traces of update events include real RSS feed traces

and synthetic traces. We also implemented WIC to

determine a schedule for OptMon1 and TTL as

another OptMon2 solution. Recall that while

OptMon1 problems set hard constraints on system

resources and OptMon2 aims at minimizing system

resource utilization. OptMon2 secures the full

satisfaction of user specification, while OptMon1 can

only aim at maximizing it. We make the following

indirect comparison:

a. We compare the system resource utilization

of the different solutions

b. Given some level of system resource

utilization when we compare the

effective utility of the different

solutions

The TTL solution will use the server provided TTL to

determine when the next probe to a resource should

be to satisfy a profile. WIC is a solution to the

OptMon1 provides the system resource utilization

and corresponding utility of the three algorithms. We

add a parameter denoted by M to represent a system

constraint on the total number of probes allowed per

chronon.

(a)

(b)

Fig. 1. SUP, WIC, and TTL for Synthetic Data 1 data set for

(a) FPN(1) and (b) Poisson.

The optimal number of probes for SUP is 2462 for

this data set. We also varied the M level for WIC.

Given that, TTL is allowed to probe the same total

number of probes as WIC (N.M) and assuming that

there are n resources. We now focus on the data set

IJDCST @November Issue- V-1, I-7, SW-48
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

126 www.ijdcst.com

and the Poisson update model of (b). The effective

utility for SUP is about 0.62, the effective utility is

represented by a single point.

VII. CONCLUSION

We focused on pull-based data delivery that

supports user profile diversity. The minimizing the

number of probes to sources is important for pull-

based applications to conserve resources and improve

scalability. The solutions that can adapt to changes in

source behavior are also important due to the

difficulty of predicting when updates occur. We have

addressed these challenges with a new formalism of a

dual optimization problem, reversing the roles of user

utility and system resources. We have formally

shown that SUP is optimal for OptMon2 and under

certain restrictions can be optimal for OptMon1 as

well. SUP is adaptive and can dynamically change

monitoring schedules. The experiments show that

using feedback in SUP improves the performance

with a moderate increase in the number of needed

probes. OptMon2 is defined in such a way that

satisfaction of a user profile is a hard constraint.

Profile may state preferences rather than hard

constraints. Extending the problem to handle profile

preferences poses a new challenge to this problem.

The algorithmic solution changes to identify the

Pareto curve of feasible solutions. Another way of

adding preferences to this work is by redefining

utility to include a variety of dimensions. We

consider this problem as another challenge and an

avenue for future research.

VIII. REFERENCE

[1] Haggai Roitman, Avigdor Gal and Louiqa

Raschid, “A Dual Framework and Algorithms for

Targeted Online Data Delivery,” IEEE Transactions

on Knowledge and Data Engineering, VOL. 23, NO.

1,pp. 5-21, JANUARY 2011.

[2] Sandeep Pandey, Kedar Dhamdhere_, Christopher

Olston, “WIC: A General-Purpose Algorithm for

Monitoring Web Information Sources,” NSF ITR

grants CCR-0085982 and CCR-0122581,

Proceedings of the 30th VLDB Conference, Toronto,

Canada, 2004

 [3] C. Liu and P. Cao, “Maintaining Strong Cache

Consistency on the World Wide Web,” Proc. Int’l

Conf. Distributed Computing Systems (ICDCS),

1997.

[4] J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar,

“Engineering Server- Driven Consistency for Large

Scale Dynamic Web Services,” Proc. Int’l World

Wide Web Conf. (WWW), pp. 45-57, May 2001.

[5] H. Liu, V. Ramasubramanian, and E.G. Sirer,

“Client and Feed Characteristics of rss, a Publish-

Subscribe System for Web Micronews,” Proc.

Internet Measurement Conf. (IMC), Oct. 2005.

[6] A. Adi and O. Etzion, “Amit—The Situation

Manager,” Int’l J. Very Large Data Bases, vol. 13,

no. 2, pp. 177-203, May 2004

[7] J. Cho and H. Garcia-Molina. Synchronizing a

database to improve freshness. In Proceedings of the

2000 ACM SIGMOD International Conference on

Management of Data, May 2000.

About Author:

Rathna kumari kilari received the

MCA PG Degree from JMJ College

for Women,Tenali,affiliated to

Acharaya Nagarjuna University,

India. She has more than 3 years

teaching experience. She is currently

purshuing her M.tech in PVP Siddhartha Institute of

Technology,Kanuru, Vijayawada affiliated to JNTU

Kakinada University, India. Her interests are

Networks,Data Mining.

Y.Surekha received the M.tech (CSE)

Degree from Bapatla engineering

college, Acharaya Nagarjuna

University,India.She has more than 4

years teaching experience. She is

currently working as an Asst Professor

in the Dept of Computer Scienc Engineering, PVP

Siddhartha Institute of Technology, Vijayawada and

affiliated to JNTU Kakinada University, India. Her

interests are Neural Networks, Data Mining.

